Hydrolysis ( /haɪˈdrɒlɨsɪs/; from Greek roots hydro "water" + lysis "separation") is a chemical reaction during which molecules of water (H2O) are split into hydrogen cations (H+, conventionally referred to as protons) and hydroxide anions (OH−) in the process of a chemical mechanism.[1][2] It is the type of reaction that is used to break down certain polymers, especially those made by condensation polymerization. Such polymer degradation is usually catalysed by either acid, e.g., concentrated sulfuric acid (H2SO4), or alkali, e.g., sodium hydroxide (NaOH).
Contents |
Hydrolysis is a chemical process in which a water molecule is added to a substance resulting in the split of that substance into two parts. One fragment of the target molecule (or parent molecule) gains a hydrogen ion (H+) from the split water molecule. The other portion of the target molecule collects the hydroxyl group (OH−) of the split water molecule. In effect an acid and a base are formed.
The most common hydrolysis occurs when a salt of a weak acid or weak base (or both) is dissolved in water. Water spontaneously ionizes into hydroxyl anions and hydrogen cations. The salt, too, dissociates into its constituent anions and cations. For example, sodium acetate dissociates in water into sodium and acetate ions. Sodium ions react very little with the hydroxyl ions whereas the acetate ions combine with hydrogen ions to produce acetic acid. In this case the net result is a relative excess of hydroxyl ions, causing a basic solution.
However, under normal conditions, only a few reactions between water and organic compounds occur. In general, strong acids or strong bases must be added to catalyze hydrolysis.
Acid–base-catalyzed hydrolyses are very common; one example is the hydrolysis of amides or esters. Their hydrolysis occurs when the nucleophile (a nucleus-seeking agent, e.g., water or hydroxyl ion) attacks the carbon of the carbonyl group of the ester or amide. In an aqueous base, hydroxyl ions are better nucleophiles than polar molecules such as water. In acids, the carbonyl group becomes protonated, and this leads to a much easier nucleophilic attack. The products for both hydrolyses are compounds with carboxylic acid groups.
Perhaps the oldest example of ester hydrolysis is the process called saponification (formation of soap). It is the hydrolysis of a triglyceride (fat) with an aqueous base such as sodium hydroxide (NaOH). During the process, glycerol is formed, and the fatty acids react with the base, converting them to salts. These salts are called soaps, commonly used in households.
Moreover, hydrolysis is an important process in plants and animals, the most significant example being energy metabolism and storage. All living cells require a continual supply of energy for two main purposes: for the biosynthesis of micro and macromolecules, and for the active transport of ions and molecules across cell membranes. The energy derived from the oxidation of nutrients is not used directly but, by means of a complex and long sequence of reactions, it is channeled into a special energy-storage molecule, adenosine triphosphate (ATP).
The ATP molecule contains pyrophosphate linkages (bonds formed when two phosphate units are combined together) that release energy when needed. ATP can undergo hydrolysis in two ways: the removal of terminal phosphate to form adenosine diphosphate (ADP) and inorganic phosphate, or the removal of a terminal diphosphate to yield adenosine monophosphate (AMP) and pyrophosphate. The latter usually undergoes further cleavage into its two constituent phosphates. This results in biosynthesis reactions, which usually occur in chains, that can be driven in the direction of synthesis when the phosphate bonds have undergone hydrolysis.
In addition, in living systems, most biochemical reactions (including ATP hydrolysis) take place during the catalysis of enzymes. The catalytic action of enzymes allows the hydrolysis of proteins, fats, oils, and carbohydrates. As an example, one may consider proteases (enzymes that aid digestion by causing hydrolysis of peptide bonds in proteins). They catalyze the hydrolysis of interior peptide bonds in peptide chains, as opposed to exopeptidases (another class of enzymes, that catalyze the hydrolysis of terminal peptide bonds, liberating one free amino acid at a time).
However, proteases do not catalyze the hydrolysis of all kinds of proteins. Their action is stereo-selective: Only proteins with a certain tertiary structure will be targeted. As some kind of orienting force is needed to place the amide group in the proper position for catalysis. The necessary contacts between an enzyme and its substrates (proteins) are created because the enzyme folds in such a way as to form a crevice into which the substrate fits; the crevice also contains the catalytic groups. Therefore, proteins that do not fit into the crevice will not undergo hydrolysis. This specificity preserves the integrity of other proteins such as hormones, and therefore the biological system continues to function normally.
In the hydrolysis of an amide, it is converted into a carboxylic acid and an amine or ammonia. The carboxylic acid has a hydroxyl group derived from a water molecule and the amine (or ammonia) gains the hydrogen ion.
A specific case of the hydrolysis of an amide link is the hydrolysis of peptides to smaller fragments or amino acids.
Many polyamide polymers such as nylon 6,6 are attacked and hydrolysed in the presence of strong acids. Such attack leads to depolymerization and nylon products fail by fracturing when exposed to even small amounts of acid. Other polymers made by step-growth polymerization are susceptible to similar polymer degradation reactions. The problem is known as stress corrosion cracking.
Monosaccharides can be linked together by glycosidic bonds, which can be cleaved by hydrolysis. Two, three, several or many monosaccharides thus linked form disaccharides, trisaccharides, oligosaccharides or polysaccharides, respectively. Enzymes that hydrolyse glycosidic bonds are called "glycoside hydrolases" or "glycosidases".
The best-known disaccharide is sucrose (table sugar). Hydrolysis of sucrose yields glucose and fructose. Invertase is a sucrase used industrially for the hydrolysis of sucrose to so-called invert sugar. Lactase is essential for digestive hydrolysis of lactose in milk. Deficiency of lactase in humans causes lactose intolerance.
The hydrolysis of polysaccharides to soluble sugars is called "saccharification". Malt made from barley is used as a source of β-amylase to break down starch into the disaccharide maltose, which can be used by yeast to produce beer. Other amylase enzymes may convert starch to glucose or to oligosaccharides. Cellulose is converted to glucose or the disaccharide cellobiose by cellulases. Animals such as cows (ruminants) are able to digest cellulose because of symbiotic bacteria that produce cellulases.
Under physiological conditions (e.g., in dilute aqueous solution), a hydrolytic cleavage reaction, in which the concentration of a metabolic precursor is low (on the order of 10−3 to 10−6 molar), is essentially thermodynamically irreversible. To give an example:
Assuming that x is the final concentration of products, and that C is the initial concentration of A, and W = [H2O] = 55.5 molar, then x can be calculated with the equation:
let Kd×W = k:
then
For a value of C = 0.001 molar, and k = 1 molar, x/C > 0.999. Less than 0.1% of the original reactant would be present once the reaction is complete.
This theme of physiological irreversibility of hydrolysis is used consistently in metabolic pathways, since many biological processes are driven by the cleavage of anhydrous pyrophosphate bonds.
Metal ions are Lewis acids, and in aqueous solution they form aqua ions, of the general formula M(H2O)nm+. [3] [4] The aqua ions undergo hydrolysis, to a greater or lesser extent. The first hydrolysis step is given generically as
Thus the aqua ion is behaving as an acid in terms of Brønsted-Lowry acid-base theory. This is easily explained by considering the inductive effect of the positively charged metal ion, which weakens the O-H bond of an attached water molecule, making the liberation of a proton relatively easy.
The dissociation constant, pKa, for this reaction is more or less linearly related to the charge-to-size ratio of the metal ion.[5] Ions with low charges, such as Na+ are very weak acids with almost imperceptible hydrolysis. Large divalent ions such as Ca2+, Zn2+, Sn2+ and Pb2+ have a pKa of 6 or more and would not normally be classed as acids, but small divalent ions such as Be2+ undergo extensive hydrolysis. Trivalent ions like Al3+ and Fe3+ are weak acids whose pKa is comparable to that of acetic acid. Solutions of salts such as BeCl2 or Al(NO3)3 in water are noticeably acidic; the hydrolysis can be suppressed by adding an acid such as nitric acid, making the solution more acidic.
Hydrolysis may proceed beyond the first step, often with the formation of polynuclear species. [5] Some "exotic" species such as Sn3(OH)42+ [6] are well characterized. Hydrolysis tends to increase as pH rises leading, in many cases, to the precipitation of an hydroxide such as Al(OH)3 or AlO(OH). These substances, the major constituents of bauxite, are known as laterites and are formed by leaching from rocks of most of the ions other than aluminium and iron and subsequent hydrolysis of the remaining aluminium and iron.
Ions with a formal charge of four have undergone extensive hydrolysis and salts of Zr4+, for example, can only be obtained from strongly acidic solutions. With oxidation states five and higher the concentration of the aqua ion in solution is negligible. In effect, the aqua ion is a strong acid. For example, aqueous solutions of Cr(VI) contain CrO42-.
Note that reactions such as
are formally hydrolysis reactions as water molecules are split up yielding hydrogen ions. Such reactions are common among polyoxometalates.